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Abstract

The theory which is presented in the following pages conceivably constitutes the
farthest-reaching generalization of a theory which, today, is generally called the
”theory of relativity”; I will call the latter one – in order to distinguish it from
the first named – the ”special theory of relativity”, which I assume to be known.
The generalization of the theory of relativity has been facilitated considerably
by Minkowski, a mathematician who was the first one to recognize the formal
equivalence of space coordinates and the time coordinate, and utilized this in the
construction of the theory. The mathematical tools that are necessary for general
relativity were readily available in the ”absolute differential calculus”, which is
based upon the research on non-Euclidean manifolds by Gauss, Riemann, and
Christoffel, and which has been systematized by Ricci and Levi-Civita and
has already been applied to problems of theoretical physics. In Part II of the present
paper I developed all the necessary mathematical tools – which cannot be assumed
to be known to every physicist – and I tried to do it in as simple and transparent a
manner as possible, so that a special study of the mathematical literature is not
required for the understanding of the present paper. Finally, I want to acknowledge
gratefully my friend, the mathematician Marcel Grossmann, whose help not
only saved me the effort of studying the pertinent mathematical literature, but
who also helped me in my search for the field equations of gravitation.
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Part I.

FUNDAMENTAL
CONSIDERATIONS ON THE
POSTULATE OF RELATIVITY



1. Observations on the Special
Theory of Relativity

The special theory of relativity is based on the following postulate, which is also
satisfied by the mechanics of Galileo and Newton. If a system of co-ordinates
K is chosen so that, in relation to it, physical laws hold good in their simplest form,
the same laws also hold good in relation to any other system of co-ordinates K ′

moving in uniform translation relatively to K. This postulate we call the ”special
principle of relativity”. The word ”special” is meant to intimate that the principle
is restricted to the case when K ′ has a motion of uniform translation relatively to
K, but that the equivalence of K ′ and K does not extend to the case of non-uniform
motion of K ′ relatively to K.
Thus the special theory of relativity does not depart from classical mechanics
through the postulate of relativity, but through the postulate of the constancy of
the velocity of light in vacuo, from which, in combination with the special principle
of relativity, there follow, in the well-known way, the relativity of simultaneity, the
Lorentzian transformation, and the related laws for the behaviour of moving
bodies and clocks.
The modification to which the special theory of relativity has subjected the theory
of space and time is indeed far reaching, but one important point has remained
unaffected. For the laws of geometry, even according to the special theory of
relativity, are to be interpreted directly as laws relating to the possible relative
positions of solid bodies at rest; and, in a more general way, the laws of kinematics
are to be interpreted as laws which describe the relations of measuring bodies and
clocks. To two selected material points of a stationary rigid body there always
corresponds a distance of quite definite length, which is independent of the locality
and orientation of the body, and is also independent of the time. To two selected
positions of the hands of a clock at rest relatively to the privileged system of
reference there always corresponds an interval of time of a definite length, which
is independent of place and time. We shall soon see that the general theory of
relativity cannot adhere to this simple physical interpretation of space and time.



2. The Need for an Extension of the
Postulate of Relativity

In classical mechanics, and no less in the special theory of relativity, there is an
inherent epistemological defect which was, perhaps for the first time, clearly pointed
out by Ernst Mach. We will elucidate it by the following example:– Two fluid
bodies of the same size and nature hover freely in space at so great a distance from
each other and from all other masses that only those gravitational forces need be
taken into account which arise from the interaction of different parts of the same
body. Let the distance between the two bodies be invariable, and in neither of the
bodies let there be any relative movements of the parts with respect to one another.
But let either mass, as judged by an observer at rest relatively to the other mass,
rotate with constant angular velocity about the line joining the masses. This is a
verifiable relative motion of the two bodies. Now let us imagine that each of the
bodies has been surveyed by means of measuring instruments at rest relatively to
itself, and let the surface of S1 prove to be a sphere, and that of S2 an ellipsoid of
revolution. Thereupon we put the question – What is the reason for this difference
in the two bodies? No answer can be admitted as epistemologically satisfactory,1

unless the reason given is an observable fact of experience. The law of causality
has not the significance of a statement as to the world of experience, except when
observable facts ultimately appear as causes and effects.
Newtonian mechanics does not give a satisfactory answer to this question. It
pronounces as follows:– The laws of mechanics apply to the space R1, in respect to
which the body S1 is at rest, but not to the space R2, in respect to which the body
S2 is at rest. But the privileged space R1 of Galileo, thus introduced, is a merely
factitious cause, and not a thing that can be observed. It is therefore clear that
Newton’s mechanics does not really satisfy the requirement of causality in the
case under consideration, but only apparently does so, since it makes the factitious
cause R1 responsible for the observable difference in the bodies S1 and S2.
The only satisfactory answer must be that the physical system consisting of S1

and S2 reveals within itself no imaginable cause to which the differing behaviour of
S1 and S2 can be referred. The cause must therefore lie outside this system. We
have to take it that the general laws of motion, which in particular determine the
shapes of S1 and S2, must be such that the mechanical behaviour of S1 and S2 is

1Of course an answer may be satisfactory from the point of view of epistemology, and yet be
unsound physically, if it is in conflict with other experiences.



2. The Need for an Extension of the Postulate of Relativity

partly conditioned, in quite essential respects, by distant masses which we have not
included in the system under consideration. These distant masses and their motions
relative to S1 and S2 must then be regarded as the seat of the causes (which must
be susceptible to observation) of the different behaviour of our two bodies S1 and
S2. They take over the role of the factitious cause R1. Of all imaginable spaces
R1, R2, etc., in any kind of motion relatively to one another, there is none which
we may look upon as privileged a priori without reviving the above-mentioned
epistemological objection. The laws of physics must be of such a nature that they
apply to systems of reference in any kind of motion. Along this road we arrive at
an extension of the postulate of relativity.
In addition to this weighty argument from the theory of knowledge, there is a
well-known physical fact which favours an extension of the theory of relativity. Let
K be a Galilean system of reference, i.e. a system relatively to which (at least in
the four-dimensional region under consideration) a mass, sufficiently distant from
other masses, is moving with uniform motion in a straight line. Let K ′ be a second
system of reference which is moving relatively to K in uniformly accelerated trans-
lation. Then, relatively to K ′, a mass sufficiently distant from other masses would
have an accelerated motion such that its acceleration and direction of acceleration
are independent of the material composition and physical state of the mass.
Does this permit an observer at rest relatively to K ′ to infer that he is on a
”really” accelerated system of reference? The answer is in the negative; for the
above-mentioned relation of freely movable masses to K ′ may be interpreted equally
well in the following way. The system of reference K ′ is unaccelerated, but the
space-time territory in question is under the sway of a gravitational field, which
generates the accelerated motion of the bodies relatively to K ′.
This view is made possible for us by the teaching of experience as to the existence
of a field of force, namely, the gravitational field, which possesses the remarkable
property of imparting the same acceleration to all bodies.2 The mechanical be-
haviour of bodies relatively to K ′ is the same as presents itself to experience in
the case of systems which we are wont to regard as ”stationary” or as ”privileged”.
Therefore, from the physical standpoint, the assumption readily suggests itself that
the systems K and K ′ may both with equal right be looked upon as ”stationary”,
that is to say, they have an equal title as systems of reference for the physical
description of phenomena.
It will be seen from these reflexions that in pursuing the general theory of rela-
tivity we shall be led to a theory of gravitation, since we are able to ”produce” a
gravitational field merely by changing the system of co-ordinates. It will also be
obvious that the principle of the constancy of the velocity of light in vacuo must
be modified, since we easily recognize that the path of a ray of light with respect
to K ′ must in general be curvilinear, if with respect to K light is propagated in a
straight line with a definite constant velocity.

2Eötvös has proved experimentally that the gravitational field has this property in great accuracy.
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3. The Space-Time Continuum.
Requirement of General
Co-Variance for the Equations
Expressing General Laws of
Nature

In classical mechanics, as well as in the special theory of relativity, the co-ordinates
of space and time have a direct physical meaning. To say that a point-event has
the X1 coordinate x1 means that the projection of the point-event on the axis
of X1, determined by rigid rods and in accordance with the rules of Euclidean
geometry, is obtained by measuring off a given rod (the unit of length) x1 times
from the origin of co-ordinates along the axis of X1. To say that a point-event has
the X4 co-ordinate x4 = t, means that a standard clock, made to measure time in a
definite unit period, and which is stationary relatively to the system of co-ordinates
and practically coincident in space with the point-event,1 will have measured off
x4 = t periods at the occurrence of the event.
This view of space and time has always been in the minds of physicists, even if, as
a rule, they have been unconscious of it. This is clear from the part which these
concepts play in physical measurements; it must also have underlain the reader’s
reflexions on the preceding chapter 2 for him to connect any meaning with what
he there read. But we shall now show that we must put it aside and replace it by
a more general view, in order to be able to carry through the postulate of general
relativity, if the special theory of relativity applies to the special case of the absence
of a gravitational field.
In a space which is free of gravitational fields we introduce a Galilean system of
reference K(x, y, z, t), and also a system of co-ordinates K ′(x′, y′, z′, t′) in uniform
rotation relatively to K. Let the origins of both systems, as well as their axes of
Z, permanently coincide. We shall show that for a spacetime measurement in the
system K ′ the above definition of the physical meaning of lengths and times cannot
be maintained. For reasons of symmetry it is clear that a circle around the origin

1We assume the possibility of verifying ”simultaneity” for events immediately proximate in space,
or – to speak more precisely – for immediate proximity or coincidence in space-time, without
giving a definition of this fundamental concept.



3. The Space-Time Continuum. Requirement of General Co-Variance for the
Equations Expressing General Laws of Nature

in the X, Y plane of K may at the same time be regarded as a circle in the X ′, Y ′

plane of K ′. We suppose that the circumference and diameter of this circle has
been measured with a unit measure infinitely small compared with the radius, and
that we have the quotient of the two results. If this experiment were performed
with a measuring-rod at rest relatively to the Galilean system K, the quotient
would be π. With a measuring-rod at rest relatively to K ′, the quotient would
be greater than π. This is readily understood if we envisage the whole process
of measuring from the ”stationary” system K, and take into consideration that
the measuring-rod applied to the periphery undergoes a Lorentzian contraction,
while the one applied along the radius does not. Hence Euclidean geometry does
not apply to K ′. The notion of co-ordinates defined above, which presupposes the
validity of Euclidean geometry, therefore breaks down in relation to the system K ′.
So, too, we are unable to introduce a time corresponding to physical requirements
in K ′, indicated by clocks at rest relatively to K ′. To convince ourselves of this
impossibility, let us imagine two clocks of identical constitution placed, one at the
origin of co-ordinates, and the other at the circumference of the circle, and both
envisaged from the ”stationary” system K. By a familiar result of the special
theory of relativity, the clock at the circumference – judged from K – goes more
slowly than the other, because the former is in motion and the latter at rest. An
observer at the common origin of co-ordinates, capable of observing the clock at
the circumference by means of light, would therefore see it lagging behind the clock
beside him. As he will not make up his mind to let the velocity of light along the
path in question depend explicitly on the time, he will interpret his observations
as showing that the clock at the circumference ”really” goes more slowly than the
clock at the origin. So he will be obliged to define time in such a way that the rate
of a clock depends upon where the clock may be.
We therefore reach this result:– In the general theory of relativity, space and time
cannot be defined in such a way that differences of the spatial co-ordinates can be
directly measured by the unit measuring-rod, or differences in the time co-ordinate
by a standard clock.
The method hitherto employed for laying co-ordinates into the space-time contin-
uum in a definite manner thus breaks down, and there seems to be no other way
which would allow us to adapt systems of co-ordinates to the four-dimensional
universe so that we might expect from their application a particularly simple formu-
lation of the laws of nature. So there is nothing for it but to regard all imaginable
systems of co-ordinates, on principle, as equally suitable for the description of
nature. This comes to requiring that:–

The general laws of nature are to be expressed by equations which
hold good for all systems of co-ordinates, that is, are co-variant with
respect to any substitutions whatever (generally co-variant).

It is clear that a physical theory which satisfies this postulate will also be suitable

10



3. The Space-Time Continuum. Requirement of General Co-Variance for the
Equations Expressing General Laws of Nature

for the general postulate of relativity, for the sum of all substitutions in any case
includes those which correspond to all relative motions of three-dimensional systems
of co-ordinates. That this requirement of general co-variance, which takes away
from space and time the last remnant of physical objectivity, is a natural one, will
be seen from the following reflexion. All our space-time verifications invariably
amount to a determination of space-time coincidences. If, for example, events
consisted merely in the motion of material points, then ultimately nothing would be
observable but the meetings of two or more of these points. Moreover, the results of
our measuring are nothing but verifications of such meetings of the material points
of our measuring instruments with other material points, coincidences between the
hands of a clock and points on the clock dial, and observed point-events happening
at the same place at the same time.
The introduction of a system of reference serves no other purpose than to facilitate
the description of the totality of such coincidences. We allot to the universe four
space-time variables x1, x2, x3, x4 in such a way that for every point-event there is
a corresponding system of values of the variables x1, x2, x3, x4. To two coincident
point-events there corresponds one system of values of the variables x1, x2, x3,
x4, i.e. coincidence is characterized by the identity of the co-ordinates. If, in
place of the variables x1, x2, x3, x4, we introduce functions of them, x′1, x

′
2, x

′
3,

x′4, as a new system of co-ordinates, so that the systems of values are made to
correspond to one another without ambiguity, the equality of all four co-ordinates
in the new system will also serve as an expression for the space-time coincidence
of the two point-events. As all our physical experience can be ultimately reduced
to such coincidences, there is no immediate reason for preferring certain systems
of co-ordinates to others, that is to say, we arrive at the requirement of general
co-variance.
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4. The Relation of the Four
Co-ordinates to Measurement in
Space and Time

It is not my purpose in this discussion to represent the general theory of relativity
as a system that is as simple and logical as possible, and with the minimum number
of axioms; but my main object is to develop this theory in such a way that the
reader will feel that the path we have entered upon is psychologically the natural
one, and that the underlying assumptions will seem to have the highest possible
degree of security. With this aim in view let it now be granted that:–
For infinitely small four-dimensional regions the theory of relativity in the restricted
sense is appropriate, if the co-ordinates are suitably chosen. For this purpose we
must choose the acceleration of the infinitely small (”local”) system of co-ordinates
so that no gravitational field occurs; this is possible for an infinitely small region.
Let X1, X2, X3, be the co-ordinates of space, and X4 the appertaining co-ordinate
of time measured in the appropriate unit.1 If a rigid rod is imagined to be given
as the unit measure, the co-ordinates, with a given orientation of the system of
co-ordinates, have a direct physical meaning in the sense of the special theory of
relativity. By the special theory of relativity the expression

ds2 = − dX2
1 − dX2

2 − dX2
3 − dX2

4 (4.1)

then has a value which is independent of the orientation of the local system of co-
ordinates, and is ascertainable by measurements of space and time. The magnitude
of the linear element pertaining to points of the four-dimensional continuum in
infinite proximity, we call ds. If the ds belonging to the element dX1, dX2, dX3,
and dX4 is positive, we follow Minkowski in calling it time-like; if it is negative,
we call it space-like.
To the ”linear element” in question, or to the two infinitely proximate point-events,
there will also correspond definite differentials dx1, dx2, dx3, and dx4 of the four-
dimensional co-ordinates of any chosen system of reference. If this system, as well
as the ”local” system, is given for the region under consideration, the dXν , will
allow themselves to be represented here by definite linear homogeneous expressions

1The unit of time is to be chosen so that the velocity of light in vacuum as measured in the ”local”
system of co-ordinates is to be equal to unity.



4. The Relation of the Four Co-ordinates to Measurement in Space and Time

of the dxσ:–
dXν =

∑
σ

ανσ dxσ . (4.2)

Inserting these expressions in Equation 4.1, we obtain

ds2 =
∑
στ

gστ dxσ dxτ , (4.3)

where the gστ will be functions of the xσ. These can no longer be dependent on
the orientation and the state of motion of the ”local” system of co-ordinates, for
ds2 is a quantity ascertainable by rod-clock measurement of point-events infinitely
proximate in space-time, and defined independently of any particular choice of
co-ordinates. The gστ are to be chosen here so that gστ = gτσ; the summation is
to extend over all values of σ and τ , so that the sum consists of 4 × 4 terms, of
which twelve are equal in pairs.
The case of the ordinary theory of relativity arises out of the case here considered,
if it is possible, by reason of the particular relations of the gστ in a finite region,
to choose the system of reference in the finite region in such a way that the gστ
assume the constant values

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1


 (4.4)

We shall find hereafter that the choice of such co-ordinates is, in general, not
possible for a finite region.
From the considerations of chapter 2 and chapter 3 it follows that the quantities gστ
are to be regarded from the physical standpoint as the quantities which describe
the gravitational field in relation to the chosen system of reference. For, if we
now assume the special theory of relativity to apply to a certain four-dimensional
region with the co-ordinates properly chosen, then the gστ have the values given
in Equation 4.4. A free material point then moves, relatively to this system, with
uniform motion in a straight line. Then if we introduce new space-time co-ordinates
x1, x2, x3, x4, by means of any substitution we choose, the gστ in this new system
will no longer be constants, but functions of space and time. At the same time the
motion of the free material point will present itself in the new co-ordinates as a
curvilinear non-uniform motion, and the law of this motion will be independent of
the nature of the moving particle. We shall therefore interpret this motion as a
motion under the influence of a gravitational field. We thus find the occurrence of
a gravitational field connected with a space-time variability of the gστ . So, too, in
the general case, when we are no longer able by a suitable choice of co-ordinates to
apply the special theory of relativity to a finite region, we shall hold fast to the
view that the gστ describe the gravitational field.

13



4. The Relation of the Four Co-ordinates to Measurement in Space and Time

Thus, according to the general theory of relativity, gravitation occupies an excep-
tional position with regard to other forces, particularly the electromagnetic forces,
since the ten functions representing the gravitational field at the same time define
the metrical properties of the space measured.

14



Part II.

MATHEMATICAL AIDS TO THE
FORMULATION OF GENERALLY

COVARIANT EQUATIONS



5. Introduction

Having seen in the foregoing that the general postulate of relativity leads to the
requirement that the equations of physics shall be covariant in the face of any
substitution of the co-ordinates x1, x2, x3, x4, we have to consider how such generally
covariant equations can be found. We now turn to this purely mathematical task,
and we shall find that in its solution a fundamental role is played by the invariant
ds given in Equation 4.3, which, borrowing from Gauss’s theory of surfaces, we
have called the ”line element”.
The fundamental idea of this general theory of covariants is the following:– Let
certain things (”tensors”) be defined with respect to any system of co-ordinates
by a number of functions of the co-ordinates, called the ”components” of the
tensor. There are then certain rules by which these components can be calculated
for a new system of co-ordinates, if they are known for the original system of
co-ordinates, and if the transformation connecting the two systems is known.
The things hereafter called tensors are further characterized by the fact that the
equations of transformation for their components are linear and homogeneous.
Accordingly, all the components in the new system vanish, if they all vanish in
the original system. If, therefore, a law of nature is expressed by equating all the
components of a tensor to zero, it is generally covariant. By examining the laws of
the formation of tensors, we acquire the means of formulating generally covariant
laws.



6. Contravariant and Covariant
Four-vectors

Contravariant Four-vectors.– The linear element is defined by the four ”components”
dxν , for which the law of transformation is expressed by the equation

dx′σ =
∑
ν

∂x′σ
∂xν

dxν (6.1)

The dx′σ are expressed as linear and homogeneous functions of the dxν . Hence we
may look upon these co-ordinate differentials as the components of a ”tensor” of
the particular kind which we call a contravariant four-vector. Anything which is
defined relatively to the system of co-ordinates by four quantities Aν , and which is
transformed by the same law

A′σ =
∑
ν

∂x′σ
∂xν

Aν , (6.2)

we also call a contravariant four-vector. From Equation 6.2 it follows at once that
the sums Aσ ± Bσ are also components of a four-vector, if Aσ and Bσ are such.
Corresponding relations hold for all ”tensors” subsequently to be introduced. (Rule
for the addition and subtraction of tensors.)
Covariant Four-vectors.– We call four quantities Aν the components of a covariant
four-vector, if for any arbitrary choice of the contravariant four-vector Bν∑

ν

AνB
ν = Invariant. (6.3)

The law of transformation of a covariant four-vector follows from this definition.
For if we replace Bν on the right-hand side of the equation∑

σ

A′
σB

′σ =
∑
ν

AνB
ν

by the expression resulting from the inversion of Equation 6.2,∑
σ

∂xν
∂x′σ

B′σ ,



6. Contravariant and Covariant Four-vectors

we obtain ∑
σ

B′σ
∑
ν

∂xν
∂x′σ

Aν =
∑
σ

B′σA′
σ .

Since this equation is true for arbitrary values of the B′σ, it follows that the law of
transformation is

A′
σ =

∑
ν

∂xν
∂x′σ

Aν . (6.4)

Note on a Simplified Way of Writing the Expressions.–
A glance at the equations of this paragraph shows that there is always a summation
with respect to the indices which occur twice under a sign of summation (e.g. the
index ν in Equation 6.1), and only with respect to indices which occur twice. It is
therefore possible, without loss of clearness, to omit the sign of summation. In its
place we introduce the convention:–
If an index occurs twice in one term of an expression, it is always to be summed
unless the contrary is expressly stated.
The difference between covariant and contravariant four-vectors lies in the law of
transformation (Equation 6.4 or Equation 6.1 respectively). Both forms are tensors
in the sense of the general remark above. Therein lies their importance. Following
Ricci and Levi-Civita, we denote the contravariant character by placing the
index above, the covariant by placing it below.
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7. Tensors of the Second and Higher
Ranks

Contravariant Tensors.– If we form all the sixteen products Aµν of the components
Aµ and Bν of two contravaniant four-vectors

Aµν = AµBν , (7.1)

then by Equation 7.1 and Equation 6.2 Aµν satisfies the law of transformation

A′στ =
∂x′σ
∂xµ

∂x′τ
∂xν

Aµν . (7.2)

We call a thing which is described relatively to any system of reference by sixteen
quantities, satisfying the law of transformation according to Equation 7.2, a
contravariant tensor of the second rank. Not every such tensor allows itself to
be formed in accordance with Equation 7.1 from two four-vectors, but it is easily
shown that any given sixteen Aµν can be represented as the sums of the AµBν of
four appropriately selected pairs of four-vectors. Hence we can prove nearly all
the laws which apply to the tensor of the second rank defined by Equation 7.2 in
the simplest manner by demonstrating them for the special tensors of the type
Equation 7.1.
Contravariant Tensors of Any Rank.– It is clear that, on the lines of Equation 7.1
and Equation 7.2, contravariant tensors of the third and higher ranks may also be
defined with 43 components, and so on. In the same way it follows from Equation 7.1
and Equation 7.2 that the contravariant four-vector may be taken in this sense as
a contravariant tensor of the first rank.
Covariant Tensors.– On the other hand, if we take the sixteen products Aµν , of
two covariant four-vectors Aµ and Bν ,

Aµν = AµBν , (7.3)

the law of transformation for these is

A′
στ =

∂xµ
∂x′σ

∂xν
∂x′τ

Aµν . (7.4)



7. Tensors of the Second and Higher Ranks

This law of transformation defines the covariant tensor of the second rank. All our
previous remarks on contravariant tensors apply equally to covariant tensors.
Note.– It is convenient to treat the scalar (or invariant) both as a contravariant
and a covariant tensor of zero rank.
Mixed Tensors.– We may also define a tensor of the second rank of the type

A ν
µ = AµB

ν (7.5)

which is covariant with respect to the index µ, and contravariant with respect to
the index ν. Its law of transformation is

A′ τ
σ =

∂x′τ
∂xν

∂xµ
∂x′σ

Aν
µ . (7.6)

Naturally there are mixed tensors with any number of indices of covariant character,
and any number of indices of contravariant character. Covariant and contravariant
tensors may be looked upon as special cases of mixed tensors.
Symmetrical Tensors.– A contravariant, or a covariant tensor, of the second or
higher rank is said to be symmetrical if two components, which are obtained the
one from the other by the interchange of two indices, are equal. The tensor Aµν , or
the tensor Aµν , is thus symmetrical if for any combination of the indices µ, ν,

Aµν = Aνµ , (7.7)

or respectively,
Aµν = Aνµ . (7.8)

It has to be proved that the symmetry thus defined is a property which is inde-
pendent of the system of reference. It follows in fact from Equation 7.2, when
Equation 7.7 is taken into consideration, that

A′στ =
∂x′σ
∂xµ

∂x′τ
∂xν

Aµν =
∂x′σ
∂xµ

∂x′τ
∂xν

Aνµ =
∂x′τ
∂xµ

∂x′σ
∂xν

Aµν = A′τσ .

The last equation but one depends upon the interchange of the summation indices
µ and ν, i.e. merely on a change of notation.
Antisymmetrical Tensors.– A contravariant or a covariant tensor of the second,
third, or fourth rank is said to be antisymmetrical if two components, which are
obtained the one from the other by the interchange of two indices, are equal and of
opposite sign. The tensor Aµν , or the tensor Aµν , is therefore antisymmetrical, if
always

Aµν = −Aνµ , (7.9)

or respectively,
Aµν = −Aνµ (7.10)
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7. Tensors of the Second and Higher Ranks

Of the sixteen components Aµν , the four components Aµµ vanish; the rest are equal
and of opposite sign in pairs, so that there are only six components numerically
different (a six-vector). Similarly we see that the antisymmetrical tensor of the third
rank Aµνσ has only four numerically different components, while the antisymmetrical
tensor Aµνστ has only one. There are no antisymmetrical tensors of higher rank
than the fourth in a continuum of four dimensions.
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8. Multiplication of Tensors

Outer Multiplication of Tensors.– We obtain from the components of a tensor of
rank n and of a tensor of rank m the components of a tensor of rank n +m by
multiplying each component of the one tensor by each component of the other.
Thus, for example, the tensors T arise out of the tensors A and B of different kinds

Tµνσ = AµνBσ ,

T µνστ = AµνBστ ,

T στ
µν = AµνB

στ .

The proof of the tensor character of T is given directly by the representations
of Equation 7.1, Equation 7.3, Equation 7.5, or by the laws of transformation
Equation 7.2, Equation 7.4, Equation 7.6. The equations Equation 7.1, Equation 7.3,
Equation 7.5 are themselves examples of outer multiplication of tensors of the first
rank.
”Contraction” of a Mixed Tensor.– From any mixed tensor we may form a tensor
whose rank is less by two, by equating an index of covariant with one of contravariant
character, and summing with respect to this index (”contraction”). Thus, for
example, from the mixed tensor of the fourth rank Aστ

µν , we obtain the mixed tensor
of the second rank

Aτ
ν = Aµτ

µν

(
=
∑
µ

Aµτ
µν

)
,

and from this, by a second contraction, the tensor of zero rank,

A = Aν
ν = Aµν

µν .

The proof that the result of contraction really possesses the tensor character is
given either by the representation of a tensor according to the generalization
of Equation 7.5 in combination with Equation 6.3, or by the generalization of
Equation 7.6.
Inner and Mixed Multiplication of Tensors.– These consist in a combination of
outer multiplication with contraction.
Examples.– From the covariant tensor of the second rank Aµν and the contravariant
tensor of the first rank Bσ we form by outer multiplication the mixed tensor

Dσ
µν = AµνB

σ .



8. Multiplication of Tensors

On contraction with respect to the indices ν and σ, we obtain the covariant
four-vector

Dµ = Dν
µν = AµνB

ν .

This we call the inner product of the tensors Aµν and Bσ. Analogously we form
from the tensors Aµν , and B

στ , by outer multiplication and double contraction, the
inner product AµνB

µν . By outer multiplication and one contraction, we obtain from
Aµν and Bστ the mixed tensor of the second rank Dτ

µ = AµνB
ντ . This operation

may be aptly characterized as a mixed one, being ”outer” with respect to the
indices µ and τ , and ”inner” with respect to the indices ν and σ.
We now prove a proposition which is often useful as evidence of tensor character.
From what has just been explained, AµνB

µν is a scalar if Aµν , and B
στ are tensors.

But we may also make the following assertion: If AµνB
µν is a scalar for any choice

of the tensor Bµν , then Aµν has tensor character. For, by hypothesis, for any
substitution,

A′
στB

′στ = AµνB
µν .

But by an inversion of Equation 7.2

Bµν =
∂xµ
∂x′σ

∂xν
∂x′τ

B′στ .

This, inserted in the above equation, gives(
A′

στ −
∂xµ
∂x′σ

∂xν
∂x′τ

Aµν

)
B′στ = 0 .

This can only be satisfied for arbitrary values of B′στ if the bracket vanishes. The
result then follows by Equation 7.4. This rule applies correspondingly to tensors of
any rank and character, and the proof is analogous in all cases.
The rule may also be demonstrated in this form: If Bµ and Cν are any vectors,
and if, for all values of these, the inner product AµνB

µCν is a scalar, then Aµν

is a covariant tensor. This latter proposition also holds good even if only the
more special assertion is correct, that with any choice of the four-vector Bµ the
inner product AµνB

µBν is a scalar, if in addition it is known that Aµν satisfies the
condition of symmetry Aµν = Aνµ. For by the method given above we prove the
tensor character of (Aµν + Aνµ), and from this the tensor character of Aµν follows
on account of symmetry. This also can be easily generalized to the case of covariant
and contravariant tensors of any rank.
Finally, there follows from what has been proved, this law, which may also be
generalized for any tensors: If for any choice of the four-vector Bν the quantities
AµνB

ν form a tensor of the first rank, then Aµν is a tensor of the second rank. For,
if Cµ is any four-vector, then on account of the tensor character of AµνB

ν , the
inner product AµνB

νCµ is a scalar for any choice of the two four-vectors Bν and
Cµ. From which the proposition follows.
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9. Some Aspects of the
Fundamental Tensor gµν

The Covariant Fundamental Tensor.– In the invariant expression for the square of
the linear element,

ds2 = gµν dxµ dxν ,

the part played by the dxµ is that of a contravariant vector which may be chosen
at will. Since further, gµν = gνµ, it follows from the considerations of the preceding
paragraph that gµν is a covariant tensor of the second rank. We call it the
”fundamental tensor”. In what follows we deduce some properties of this tensor
which, it is true, apply to any tensor of the second rank. But as the fundamental
tensor plays a special part in our theory, which has its physical basis in the peculiar
effects of gravitation, it so happens that the relations to be developed are of
importance to us only in the case of the fundamental tensor.
The Contravariant Fundamental Tensor.– If in the determinant formed by the
elements gµν , we take the co-factor of each of the gµν and divide it by the determinant
g = |gµν |, we obtain certain quantities gµν(= gνµ) which, as we shall demonstrate,
form a contravariant tensor.
By a known property of determinants

gµσg
νσ = δ ν

µ , (9.1)

where the symbol δ ν
µ denotes 1 or 0, according as µ = ν or µ ̸= ν.

Instead of the above expression for ds2 we may thus write

gµσδ
σ

ν dxµ dxν ,

or, by Equation 9.1
gµσgντg

στ dxµ dxν .

But, by the multiplication rules of the preceding paragraphs, the quantities

dξσ = gµσ dxµ

form a covariant four-vector, and in fact an arbitrary choosable four-vector, since
the dxµ are arbitrary. By introducing this into our expression we obtain

ds2 = gστ dξσ dξτ .
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Since this, with the arbitrary choice of the vector dξσ, is a scalar, and gστ by its
definition is symmetrical in the indices σ and τ , it follows from the results of the
preceding paragraph that gστ is a contravariant tensor.
It further follows from Equation 9.1 that δ ν

µ is also a tensor, which we may call
the mixed fundamental tensor.
The Determinant of the Fundamental Tensor.– By the rule for the multiplication
of determinants

|gµαgαν | = |gµα| · |gαν | .

On the other hand
|gµαgαν | =

∣∣δ ν
µ

∣∣ = 1 .

It therefore follows that
|gµν | · |gµν | = 1 . (9.2)

The Volume Scalar.– We seek first the law of transformation of the determinant
g = |gµν |. In accordance with Equation 7.4

g′ =

∣∣∣∣∂xµ∂x′σ

∂xν
∂x′τ

gµν

∣∣∣∣ .
Hence, by a double application of the rule for the multiplication of determinants,
it follows that

g′ =

∣∣∣∣∂xµ∂x′σ

∣∣∣∣ · ∣∣∣∣∂xν∂x′τ

∣∣∣∣ · |gµν | = ∣∣∣∣∂xµ∂x′σ

∣∣∣∣2 g ,
or √

g′ =

∣∣∣∣∂xµ∂x′σ

∣∣∣∣ · √g .
On the other hand, the law of transformation of the element of volume

dτ ′ =

∫
dx1 dx2 dx3 dx4

is, in accordance with the theorem of Jacobi,

dτ ′ =

∣∣∣∣∂x′σ∂xµ

∣∣∣∣ dτ .
By multiplication of the last two equations, we obtain√

g′ · dτ ′ = √
g · dτ . (9.3)

Instead of
√
g, we introduce in what follows the quantity

√
−g, Which is always

real on account of the hyperbolic character of the space-time continuum. The
invariant

√
−g dτ is equal to the magnitude of the four-dimensional element of

volume in the ”local” system of reference, as measured with rigid rods and clocks
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9. Some Aspects of the Fundamental Tensor gµν

in the sense of the special theory of relativity.
Note on the Character of the Space-time Continuum.– Our assumption that the
special theory of relativity can always be applied to an infinitely small region,
implies that ds2 can always be expressed in accordance with Equation 4.1 by means
of real quantities dX1, dX2, dX3, and dX4. If we denote by dτ0 the ”natural”
element of volume dX1, dX2, dX3, dX4 then

dτ0 =
√
−g · dτ . (9.4)

If
√
−g were to vanish at a point of the four-dimensional continuum, it would

mean that at this point an infinitely small ”natural” volume would correspond
to a finite volume in the co-ordinates. Let us assume that this is never the case.
Then g cannot change sign. We will assume that, in the sense of the special theory
of relativity, g always has a finite negative value. This is a hypothesis as to the
physical nature of the continuum under consideration, and at the same time a
convention as to the choice of co-ordinates.
But if −g is always finite and positive, it is natural to settle the choice of co-
ordinates a posteriori in such a way that this quantity is always equal to unity. We
shall see later that by such a restriction of the choice of co-ordinates it is possible
to achieve an important simplification of the laws of nature.
In place of Equation 9.3, we then have simply

dτ ′ = dτ ,

from which, in view of Jacobi’s theorem, it follows that∣∣∣∣∂x′σ∂xµ

∣∣∣∣ = 1 . (9.5)

Thus, with this choice of co-ordinates, only substitutions for which the determinant
is unity are permissible.
But it would be erroneous to believe that this step indicates a partial abandonment
of the general postulate of relativity. We do not ask ”What are the laws of nature
which are covariant in face of all substitutions for which the determinant is unity?”,
but our question is ”What are the generally covariant laws of nature?”. It is not
until we have formulated these that we simplify their expression by a particular
choice of the system of reference.
The Formation of New Tensors by Means of the Fundamental Tensor.– Inner, outer,
and mixed multiplication of a tensor by the fundamental tensor give tensors of
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9. Some Aspects of the Fundamental Tensor gµν

different character and rank. For example

Aµ = gµσAσ ,

A = gµνA
µν .

The following forms may be specially noted:–

Aµν = gµαgνβAαβ ,

Aµν = gµαgνβA
αβ

(the ”complements” of covariant and contravariant tensors respectively), and

Bµν = gµνg
αβAαβ .

We call Bµν the reduced tensor associated with Aµν .
Similarly,

Bµν = gµνgαβA
αβ .

It may be noted that gµν is nothing more than the complement of gµν , since

gµαgνβgαβ = gµαδ ν
α = gµν .
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10. The Equation of the Geodetic
Line. The Motion of a Particle

As the linear element ds is defined independently of the system of co-ordinates,
the line drawn between two points P and P ′ of the four-dimensional continuum in
such a way that

∫
ds is stationary – a geodetic line – has a meaning which also is

independent of the choice of co-ordinates. Its equation is

δ

{∫ P ′

P

ds

}
= 0 . (10.1)

Carrying out the variation in the usual way, we obtain from this equation four
differential equations which define the geodetic line; this operation will be inserted
here for the sake of completeness. Let λ be a function of the co-ordinates xν , and
let this define a family of surfaces which intersect the required geodetic line as
well as all the lines in immediate proximity to it which are drawn through the
points P and P ′. Any such line may then be supposed to be given by expressing
its co-ordinates xν as functions of λ. Let the symbol δ indicate the transition from
a point of the required geodetic to the point corresponding to the same λ on a
neighbouring line. Then for Equation 10.1 we may substitute∫ λ2

λ1

δw dλ = 0

w2 = gµν
dxµ
dλ

dxν
dλ

.

 (10.2)

But since

δw =
1

w
·
{
1

2
· ∂gµν
∂xσ

dxµ
dλ

dxν
dλ

δxσ + gµν
dxµ
dλ

δ

(
dxν
dλ

)}
,

and recognizing that

δ

(
dxν
dλ

)
=

d

dλ
(δxν) ,
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we obtain from Equation 10.2, after a partial integration∫ λ2

λ1

κσδxσ dλ = 0 ,

where

κσ =
d

dλ

{
gµν
w

dxµ
dλ

}
− 1

2w
· ∂gµν
∂xσ

dxµ
dλ

dxν
dλ

.


(10.3)

Since the values of δxσ are arbitrary, it follows from this that

κσ = 0 (10.4)

are the equations of the geodetic line.
If ds does not vanish along the geodetic line we may choose the ”length of the arc”
s, measured along the geodetic line, for the parameter λ. Then w = 1, and in place
of Equation 10.4 we obtain

gµν
d2xµ
ds2

+
∂gµν
∂xσ

dxσ
ds

dxµ
ds

− 1

2
· ∂gµν
∂xσ

dxµ
ds

dxν
ds

= 0 ,

or, by a mere change of notation,

gασ
d2xα
ds2

+

[
µ ν
σ

]
dxµ
ds

dxν
ds

= 0 , (10.5)

where, following Christoffel, we have written[
µ ν
σ

]
=

1

2
·
(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
. (10.6)

Finally, if we multiply Equation 10.5 by gστ (outer multiplication with respect to τ ,
inner with respect to σ), we obtain the equations of the geodetic line in the form

d2xτ
ds2

+

{
µ ν
τ

}
dxµ
ds

dxν
ds

= 0 . (10.7)

where, following Christoffel, we have set{
µ ν
τ

}
= gτα

[
µ ν
α

]
. (10.8)
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11. The Formation of Tensors by
Differentiation

With the help of the equation of the geodetic line we can now easily deduce the
laws by which new tensors can be formed from old by differentiation. By this
means we are able for the first time to formulate generally covariant differential
equations. We reach this goal by repeated application of the following simple
law:– If in our continuum a curve is given, the points of which are specified by the
arcual distance s measured from a fixed point on the curve, and if, further, ϕ is an
invariant function of space, then dϕ

ds
is also an invariant.

The proof lies in this, that ds is an invariant as well as dϕ.
As

dϕ

ds
=

dϕ

dxµ

dxµ
ds

,

therefore

ψ =
∂ϕ

∂xµ

dxµ
ds

is also an invariant, and an invariant for all curves starting from a point of the
continuum, that is, for any choice of the vector dxµ. Hence it immediately follows
that

Aµ =
∂ϕ

∂xµ
(11.1)

is a covariant four-vector – the ”gradient” of ϕ.
According to our rule, the differential quotient

χ =
dψ

ds

taken on a curve, is similarly an invariant. Inserting the value of ψ, we obtain in
the first place

χ =
∂2ϕ

∂xµ ∂xν

dxµ
ds

dxν
ds

+
dϕ

dxµ

d2xµ
ds2

.

The existence of a tensor cannot be deduced from this forthwith. But if we may
take the curve along which we have differentiated to be a geodetic, we obtain on
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substitution for d2xν

ds2
from Equation 10.7,

χ =

{
∂2ϕ

∂xµ ∂xν
−
{
µ ν
τ

}
∂ϕ

∂xτ

}
dxµ
ds

dxν
ds

.

Since we may interchange the order of the differentiations, and since by Equa-

tion 10.8 and Equation 10.6

{
µ ν
τ

}
is symmetrical in µ and ν, it follows that

the expression in brackets is symmetrical in µ and ν. Since a geodetic line can
be drawn in any direction from a point of the continuum, and therefore dxµ

ds
is a

four-vector with the ratio of its components arbitrary, it follows from the results of
chapter 8 that

Aµν =
∂2ϕ

∂xµ ∂xν
−
{
µ ν
τ

}
∂ϕ

∂xτ
(11.2)

is a covariant tensor of the second rank. We have therefore come to this result:
from the covariant tensor of the first rank

Aµ =
∂ϕ

∂xµ

we can, by differentiation, form a covariant tensor of the second rank

Aµν =
∂Aµ

∂xν
−
{
µ ν
τ

}
Aτ . (11.3)

We call the tensor Aµν the ”extension” (covariant derivative) of the tensor Aµ. In
the first place we can readily show that the operation leads to a tensor, even if the
vector Aµ cannot be represented as a gradient. To see this, we first observe that

ψ · ∂ϕ
∂xµ

is a covariant vector, if ψ and ϕ are scalars. The sum of four such terms

Sµ = ψ(1)∂ϕ
(1)

∂xµ
+ ψ(2)∂ϕ

(2)

∂xµ
+ ψ(3)∂ϕ

(3)

∂xµ
+ ψ(4)∂ϕ

(4)

∂xµ
,

is also a covariant vector, if ψ(1), ϕ(1), . . . , ψ(4), ϕ(4) are scalars. But it is clear that
any covariant vector can be represented in the form Sµ. For, if Aµ is a vector whose
components are any given functions of the xν , we have only to put (in terms of the
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11. The Formation of Tensors by Differentiation

selected system of co-ordinates)

ψ(1) = A1

ψ(2) = A2

ψ(3) = A3

ψ(4) = A4

and also

ϕ(1) = x1

ϕ(2) = x2

ϕ(3) = x3

ϕ(4) = x4 ,

in order to ensure that Sµ shall be equal to Aµ.
Therefore, in order to demonstrate that Aµν is a tensor if any covariant vector is
inserted on the right-hand side for Aµ, we only need show that this is so for the
vector Sµ. But for this latter purpose it is sufficient, as a glance at the right-hand
side of Equation 11.3 teaches us, to furnish the proof for the case

Aµ = ψ · ∂ϕ
∂xµ

Now the right-hand side of Equation 11.2 multiplied by ψ,

ψ · ∂2ϕ

∂xµ ∂xν
−
{
µ ν
τ

}
ψ · ∂ϕ

∂xτ

is a tensor. Similarly
∂ψ

∂xµ

∂ϕ

∂xν

being the outer product of two vectors, is a tensor. By addition, there follows the
tensor character of

∂

∂xν

(
ψ · ∂ϕ

∂xµ

)
−
{
µ ν
τ

}(
ψ · ∂ϕ

∂xτ

)
.

As a glance at Equation 11.3 will show, this completes the demonstration for the
vector

ψ · ∂ϕ
∂xµ

,
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and consequently, from what has already been proved, for any vector Aµ.
By means of the extension of the vector, we may easily define the ”extension” of a
covariant tensor of any rank. This operation is a generalization of the extension of
a vector. We restrict ourselves to the case of a tensor of the second rank, since this
suffices to give a clear idea of the law of formation.
As has already been observed, any covariant tensor of the second rank can be
represented1 as the sum of tensors of the type AµBν . It will therefore be sufficient
to deduce the expression for the extension of a tensor of this special type. By
Equation 11.3 the expressions

∂Aµ

∂xσ
−
{
σ µ
τ

}
Aτ ,

∂Bν

∂xσ
−
{
σ ν
τ

}
Bτ

are tensors. On outer multiplication of the first by Bν , and of the second by Aµ,
we obtain in each case a tensor of the third rank. By adding these, we have the
tensor of the third rank

Aµνσ =
∂Aµν

∂xσ
−
{
σ µ
τ

}
Aτν −

{
σ ν
τ

}
Aµτ (11.4)

where we have put Aµν = AµBν . As the right-hand side of Equation 11.4 is linear
and homogeneous in the Aµν and their first derivatives, this law of formation leads
to a tensor, not only in the case of a tensor of the type AµBν , but also in the case
of a sum of such tensors, i.e. in the case of any covariant tensor of the second rank.
We call Aµνσ the extension of the tensor Aµν .
It is clear that Equation 11.3 and Equation 11.1 concern only special cases of
extension (the extension of the tensors of rank one and zero respectively).
In general, all special laws of formation of tensors are included in Equation 11.4 in
combination with the multiplication of tensors.

1By outer multiplication of the vector with arbitrary components A11, A12, A13, A14 by the
vector with components 1, 0, 0, 0, we produce a tensor with components

A11 A12 A13 A14

0 0 0 0
0 0 0 0
0 0 0 0


By the addition of four tensors of this type, we obtain the tensor Aµν with any assigned
components.

33



12. Some Cases of Special
Importance

The Fundamental Tensor.– We will first prove some lemmas which will be useful
hereafter. By the rule for the differentiation of determinants

dg = gµνg dgµν = −gµνg dgµν . (12.1)

the last member is obtained from the last but one, if we bear in mind that
gµνg

µ′ν = δ µ′
µ , so that gµνg

µν = 4, and consequently

gµν dg
µν + gµνg dgµν = 0 .

From Equation 12.1, it follows that

1√
−g

∂
√
−g

∂xσ
=

1

2
· ∂ log(

√
−g)

∂xσ
=

1

2
· gµν ∂gµν

∂xσ
= −1

2
· gµν

∂gµν

∂xσ
. (12.2)

Further, from
gµσg

νσ = δ ν
µ

it follows on differentiation that

gµσ dg
νσ = −gνσ dgµσ

and

gµσ
∂gνσ

∂xλ
= −gνσ ∂gµσ

∂xλ
.

 (12.3)

From these, by mixed multiplication by gστ and gνλ respectively, and a change of
notation for the indices, we have

dgµν = −gµαgνβ dgαβ ,
∂gµν

∂xσ
= −gµαgνβ ∂gαβ

∂xσ

 (12.4)
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and

dgµν = −gµαgνβ dgαβ

∂gµν
∂xσ

= −gµαgνβ
∂gαβ

∂xσ
.

 (12.5)

The Equation 12.4 admits of a transformation, of which we also have frequently to
make use: From Equation 10.6

∂gαβ
∂xσ

=

[
α σ
β

]
+

[
β σ
α

]
. (12.6)

Inserting this in the second formula of Equation 12.4, we obtain, in view of
Equation 10.8

∂gµν

∂xσ
= −

(
gµτ
{
τ σ
ν

}
+ gντ

{
τ σ
µ

})
. (12.7)

Substituting the right-hand side of Equation 12.7 in Equation 12.2, we have

1√
−g

· ∂
√
−g

∂xσ
=

{
µ σ
µ

}
. (12.8)

The ”Divergence” of a Contravariant Vector.– If we take the inner product of
Equation 11.3 by the contravariant fundamental tensor gµν , the right-hand side,
after a transformation of the first term, assumes the form

∂

∂xν
(gµνAµ)− Aµ

∂gµν

∂xν
− 1

2
· gτα

(
∂gµα
∂xν

+
∂gνα
∂xµ

− ∂gµν
∂xα

)
gµνAτ .

In accordance with Equation 12.4 and Equation 12.2, the last term of this expression
may be written as

1

2
· ∂g

τν

∂xν
Aτ +

1

2
· ∂g

τµ

∂xµ
Aτ +

1√
−g

· ∂
√
−g

∂xα
gµνAτ .

As the symbols of the indices of summation are immaterial, the first two terms of
this expression cancel the second of the one above. If we then write

gµνAµ = Aν

so that Aν like Aµ is an arbitrary vector, we finally obtain

Φ =
1√
−g

· ∂

∂xν

(√
−g · Aν

)
. (12.9)
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This scalar is the divergence of the contravariant vector Aν .
The ”Curl” of a Covariant Vector.– The second term in Equation 11.3 is symmetrical
in the indices µ and ν. Therefore Aµν − Aνµ is a particularly simply constructed
antisymmetrical tensor. We obtain

Bµν =
∂Aµ

∂xν
− ∂Aν

∂xµ
(12.10)

Antisymmetrical Extension of a Six-vector.– Applying Equation 11.4 to an anti-
symmetrical tensor of the second rank Aµν , forming in addition the two equations
which arise through cyclic permutations of the indices, and adding these three
equations, we obtain the tensor of the third rank

Bµνσ = Aµνσ + Aνσµ + Aσµν =
∂Aµν

∂xσ
+
∂Aνσ

∂xµ
+
∂Aσµ

∂xν
, (12.11)

which it is easy to prove is antisymmetrical.
The Divergence of a Six-vector.– Taking the mixed product of Equation 11.4
by gµαgνβ, we also obtain a tensor. The first term on the right-hand side of
Equation 11.4 may be written in the form

∂

∂xσ

(
gµαgνβAµν

)
− gµα

∂gνβ

∂xσ
Aµν − gνβ

∂gµα

∂xσ
Aµν

If we write Aαβ
σ for gµαgνβAµνσ and Aαβ for gµαgνβAµν , and in the transformed

first term replace
∂gνβ

∂xσ
und

∂gµα

∂xσ

by their values as given by Equation 12.7, there results from the right-hand side of
Equation 11.4 an expression consisting of seven terms, of which four cancel, and
there remains

Aαβ
σ =

∂Aαβ

∂xσ
+

{
σ γ
α

}
Aγβ +

{
σ γ
β

}
Aαγ . (12.12)

This is the expression for the extension of a contravariant tensor of the second
rank, and corresponding expressions for the extension of contravariant tensors of
higher and lower rank may also be formed.
We note that in an analogous way we may also form the extension of a mixed tensor:–

A α
µσ =

∂A α
µ

∂xσ
−
{
σ µ
τ

}
A α

τ +

{
σ τ
α

}
A τ

µ . (12.13)
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12. Some Cases of Special Importance

On contracting Equation 12.12 with respect to the indices β and σ (inner multipli-
cation by δ σ

β ), we obtain the vector

Aα =
∂Aαβ

∂xβ
+

{
β γ
β

}
Aαγ +

{
β γ
α

}
Aγβ .

On account of the symmetry of

{
β γ
α

}
with respect to the indices β and γ,

the third term on the right-hand side vanishes, if Aαβ is, as we will assume,
an antisymmetrical tensor. The second term allows itself to be transformed in
accordance with Equation 12.8. Thus we obtain

Aα =
1√
−g

·
∂
(√

−g · Aαβ
)

∂xβ
. (12.14)

This is the expression for the divergence of a contravariant six-vector.
The Divergence of a Mixed Tensor of the Second Rank.– Contracting Equation 12.13
with respect to the indices α and σ, and taking Equation 12.8 into consideration,
we obtain

√
−g · Aµ =

∂
(√

−g · A σ
µ

)
∂xσ

−
{
σ µ
τ

}√
−g · A σ

τ . (12.15)

If we introduce the contravariant tensor Aρσ = gρτA σ
τ in the last term, it assumes

the form

−
[
σ µ
ρ

]√
−g · Aρσ .

If, further, the tensor Aρσ is symmetrical, this reduces to

−1

2
·
√
−g · ∂gρσ

∂xµ
Aρσ .

Had we introduced, instead of Aρσ, the covariant tensor Aρσ = gραgσβA
αβ, which is

also symmetrical, the last term, by virtue of Equation 12.4, would assume the form

1

2
·
√
−g · ∂g

ρσ

∂xµ
Aρσ .
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12. Some Cases of Special Importance

In the case of symmetry in question, Equation 12.15 may therefore be replaced by
the two forms

√
−g · Aµ =

∂
(√

−g · Aσ
µ

)
∂xσ

− 1

2
· ∂gρσ
∂xµ

√
−g · Aρσ (12.16a)

and

√
−g · Aµ =

∂
(√

−g · Aσ
µ

)
∂xσ

− 1

2
· ∂g

ρσ

∂xµ

√
−g · Aρσ (12.16b)

which we have to employ later on.
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13. The Riemann-Christoffel Tensor

We now seek the tensor which can be obtained from the fundamental tensor
alone, by differentiation. At first sight the solution seems obvious. We place the
fundamental tensor of the gµν in Equation 11.4 instead of any given tensor Aµν ,
and thus have a new tensor, namely, the extension of the fundamental tensor. But
we easily convince ourselves that this extension vanishes identically. We reach our
goal, however, in the following way. In Equation 11.4 place

Aµν =
∂Aµ

∂xν
−
{
µ ν
ρ

}
Aρ ,

i.e., the extension of the four-vector Aµ. Then (with a somewhat different naming
of the indices) we get the tensor of the third rank

Aµστ =
∂2Aµ

∂xσ ∂xτ

−
{
µ σ
ρ

}
∂Aρ

∂xτ
−
{
µ τ
ρ

}
∂Aρ

∂xσ
−
{
σ τ
ρ

}
∂Aµ

∂xρ

+

[
− ∂

∂xτ

{
µ σ
ρ

}
+

{
µ τ
α

}{
α σ
ρ

}
+

{
σ τ
α

}{
α µ
ρ

}]
Aρ .

This expression suggests forming the tensor Aµστ − Aµτσ. For, if we do so, the
following terms of the expression for Aµστ cancel those of Aµτσ, the first, the fourth,
and the member corresponding to the last term in square brackets; because all
these are symmetrical in σ and τ . The same holds good for the sum of the second
and third terms. Thus we obtain

Aµστ − Aµτσ = Bρ
µστAρ , (13.1)

where

Bρ
µστ = − ∂

∂xτ

{
µ σ
ρ

}
+

∂

∂xσ

{
µ τ
ρ

}
−
{
µ σ
α

}{
α τ
ρ

}
+

{
µ τ
α

}{
α σ
ρ

}
.

 (13.2)

The essential feature of the result is that on the right side of Equation 13.1 the Aρ

occur alone, without their derivatives. From the tensor character of Aµστ − Aµτσ
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in conjunction with the fact that Aρ is an arbitrary vector, it follows, by reason of
chapter 8, that Bρ

µστ is a tensor (the Riemann-Christoffel tensor).
The mathematical importance of this tensor is as follows: If the continuum is of
such a nature that there is a co-ordinate system with reference to which the gµν are
constants, then all the Bρ

µστ vanish. If we choose any new system of coordinates
in place of the original ones, the gµν referred thereto will not be constants, but
in consequence of its tensor nature, the transformed components of Bρ

µστ will still
vanish in the new system. Thus the vanishing of the Riemann tensor is a necessary
condition that, by an appropriate choice of the system of reference, the gµν may be
constants. In our problem this corresponds to the case in which,1 with a suitable
choice of the system of reference, the special theory of relativity holds good for a
finite region of the continuum.
Contracting Equation 13.2 with respect to the indices τ and ρ we obtain the
covariant tensor of second rank

Gµν = Bρ
µσρ = Rµν + Sµν

where

Rµν = − ∂

∂xα

{
µ ν
α

}
+

{
µ α
β

}{
ν β
α

}
Sµν =

∂2 (log
√
−g)

∂xµ ∂xν
−
{
µ ν
α

}
∂ (log

√
−g)

∂xα
.


(13.3)

Note on the Choice of Co-ordinates.– It has already been observed in chapter 9, in
connexion with Equation 9.4, that the choice of co-ordinates may with advantage be
made so that

√
−g = 1. A glance at the equations obtained in the last two sections

shows that by such a choice the laws of formation of tensors undergo an important
simplification. This applies particularly to Gµν , the tensor just developed, which
plays a fundamental part in the theory to be set forth. For this specialization of
the choice of co-ordinates brings about the vanishing of Sµν , so that the tensor Gµν

reduces to Rµν .
On this account I shall hereafter give all relations in the simplified form which this
specialization of the choice of coordinates brings with it. It will then be an easy
matter to revert to the generally covariant equations, if this seems desirable in a
special case.

1The mathematicians have proved that this is also a sufficient condition.
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Part III.

THEORY OF THE
GRAVITATIONAL FIELD



14. Equations of Motion of a
Material Point in the
Gravitational Field. Expression
for the Field-components of
Gravitation

A freely movable body not subjected to external forces moves, according to the
special theory of relativity, in a straight line and uniformly. This is also the case,
according to the general theory of relativity, for a part of four-dimensional space in
which the system of co-ordinates K0, may be, and is, so chosen that they have the
special constant values given in Equation 4.4.
If we consider precisely this movement from any chosen system of co-ordinates K1,
the body, observed from K1, moves, according to the considerations in chapter 2,
in a gravitational field. The law of motion with respect to K1 results without
difficulty from the following consideration. With respect to K0 the law of motion
corresponds to a four-dimensional straight line, i.e. to a geodetic line. Now since
the geodetic line is defined independently of the system of reference, its equations
will also be the equation of motion of the material point with respect to K1. If we
set

Γτ
µν = −

{
µ ν
τ

}
, (14.1)

the equation of the motion of the point with respect to K1, becomes

d2xτ
ds2

= Γτ
µν

dxµ
ds

dxν
ds

. (14.2)

We now make the assumption, which readily suggests itself, that this covariant
system of equations also defines the motion of the point in the gravitational field
in the case when there is no system of reference K0, with respect to which the
special theory of relativity holds good in a finite region. We have all the more
justification for this assumption as Equation 14.2 contains only first derivatives of
the gµν , between which even in the special case of the existence of K0, no relations



14. Equations of Motion of a Material Point in the Gravitational Field.
Expression for the Field-components of Gravitation

subsist.1

If the Γτ
µν vanish, then the point moves uniformly in a straight line. These quantities

therefore condition the deviation of the motion from uniformity. They are the
components of the gravitational field.

1It is only between the second (and first) derivatives that, by chapter 13, the relations Bρ
µστ = 0

subsist.
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15. The Field Equations of
Gravitation in the Absence of
Matter

We make a distinction hereafter between ”gravitational field” and ”matter” in
this way, that we denote everything but the gravitational field as ”matter”. Our
use of the word therefore includes not only matter in the ordinary sense, but the
electromagnetic field as well.
Our next task is to find the field equations of gravitation in the absence of matter.
Here we again apply the method employed in the preceding paragraph in formu-
lating the equations of motion of the material point. A special case in which the
required equations must in any case be satisfied is that of the special theory of
relativity, in which the gµν have certain constant values. Let this be the case in a
certain finite space in relation to a definite system of co-ordinates K0. Relatively
to this system all the components of the Riemann tensor Bρ

µστ defined in Equa-
tion 13.2, vanish. For the space under consideration they then vanish, also in any
other system of co-ordinates.
Thus the required equations of the matter-free gravitational field must in any case
be satisfied if all Bρ

µστ vanish. But this condition goes too far. For it is clear
that, e.g., the gravitational field generated by a material point in its environment
certainly cannot be ”transformed away” by any choice of the system of co-ordinates,
i.e. it cannot be transformed to the case of constant gµν .
This prompts us to require for the matter-free gravitational field that the sym-
metrical tensor Gµν , derived from the tensor Bρ

µστ shall vanish. Thus we obtain
ten equations for the ten quantities gµν , which are satisfied in the special case of
the vanishing of all Bρ

µστ . With the choice which we have made of a system of
co-ordinates, and taking Equation 13.3 into consideration, the equations for the
matter-free field are

∂Γα
µν

∂xα
+ Γα

µβ · Γβ
να = 0

√
−g = 1 .

 (15.1)

It must be pointed out that there is only a minimum of arbitrariness in the choice
of these equations. For besides Gµν there is no tensor of second rank which is
formed from the gµν and its derivatives, contains no derivations higher than second,
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and is linear in these derivatives.1

These equations, which proceed, by the method of pure mathematics, from the
requirement of the general theory of relativity, give us, in combination with the
equations of motion Equation 14.2, to a first approximation Newton’s law of
attraction, and to a second approximation the explanation of the motion of the
perihelion of the planet Mercury discovered by Leverrier (as it remains after
corrections for perturbation have been made). These facts must, in my opinion, be
taken as a convincing proof of the correctness of the theory.

1Properly speaking, this can be affirmed only of the tensor

Gµν + λgµνg
αβGαβ ,

where λ a constant. If, however, we set this tensor = 0, we come back again to the equations
Gµν = 0.
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16. The Hamiltonian Function for
the Gravitational Field. Laws of
Momentum and Energy

To show that the field equations correspond to the laws of momentum and energy,
it is most convenient to write them in the following Hamiltonian form:–

δ

{∫
H dτ

}
= 0

H = gµνΓα
µβΓ

β
να√

−g = 1 .

 (16.1)

where, on the boundary of the finite four-dimensional region of integration which
we have in view, the variations vanish.
We first have to show that the form Equation 16.1 is equivalent to the equations
according to Equation 15.1. For this purpose we regard H as a function of the gµν

and the

gµνσ

(
=
∂gµν

∂xσ

)
.

Then in the first place

δH = Γα
µβΓ

β
ναδg

µν + 2 · gµνΓα
µβδΓ

β
να

= −Γα
µβΓ

β
ναδg

µν + 2 · Γα
µβδ
(
gµνΓβ

να

)
.

But

δ
(
gµνΓβ

να

)
= −1

2
· δ
[
gµνgβλ ·

(
∂gνλ
∂xα

+
∂gαλ
∂xν

− ∂gαν
∂xλ

)]
.

The terms arising from the last two terms in round brackets are of different sign,
and result from each other (since the denomination of the summation indices is
immaterial) through interchange of the indices µ and β. They cancel each other
in the expression for δH, because they are multiplied by the quantity Γα

µβ, which
is symmetrical with respect to the indices µ and β. Thus there remains only the
first term in round brackets to be considered, so that, taking Equation 12.4 into
account, we obtain

δH = −Γα
µβΓ

β
ναδg

µν + Γα
µβδg

µβ
α .



16. The Hamiltonian Function for the Gravitational Field. Laws of Momentum
and Energy

Thus

∂H

∂gµν
= −Γα

µβΓ
β
να

∂H

∂gµνσ
= Γσ

µν .

 (16.2)

Carrying out the variation in Equation 16.1, we get in the first place

∂

∂xα

(
∂H

∂gµνα

)
− ∂H

∂gµν
= 0 , (16.3)

which, on account of Equation 16.2, agrees with Equation 15.1, as was to be proved.
If we multiply Equation 16.3 by gµνσ , then because

∂gµνσ
∂xα

=
∂gµνα
∂xσ

and, consequently,

gµνσ
∂

∂xα

(
∂H

∂gµνα

)
=

∂

∂xα

(
gµνσ

∂H

∂gµνα

)
− ∂H

∂gµνα

∂gµνα
∂xσ

,

we obtain the equation

∂

∂xα

(
gµνσ

∂H

∂gµνα

)
− ∂H

∂xσ
= 0

or1

∂tασ
∂xα

= 0

−2κ · tασ = gµνσ
∂H

∂gµνα
− δασH ,

 (16.4)

where, on account of Equation 16.2, the second equation of Equation 15.1, and
Equation 12.7

κ · tασ =
1

2
· δασgµνΓλ

µβΓ
β
νλ − gµνΓα

µβΓ
β
νσ . (16.5)

It is to be noticed that tασ is not a tensor; on the other hand Equation 16.4 applies
to all systems of co-ordinates for which

√
−g = 1. This equation expresses the law

of conservation of momentum and of energy for the gravitational field. Actually
the integration of this equation over a three-dimensional volume V yields the four

1The reason for the introduction of the factor −2κ will be apparent later.
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16. The Hamiltonian Function for the Gravitational Field. Laws of Momentum
and Energy

equations
d

dx4

{∫
t4σ dV

}
=

∫ (
lt1σ +mt2σ + nt3σ

)
dS , (16.6)

where l, m, n denote the direction-cosines of direction of the inward drawn normal
at the element dS of the bounding surface (in the sense of Euclidean geometry).
We recognize in this the expression of the laws of conservation in their usual form.
The quantities tασ we call the ”energy components” of the gravitational field.
I will now give Equation 15.1 in a third form, which is particularly useful for a
vivid grasp of our subject. By multiplication of the field Equation 15.1 by gνσ

these are obtained in the ”mixed” form. Note that

gνσ
∂Γ α

µν

∂xα
=

∂

∂xα

(
gνσΓ α

µν

)
− ∂gνσ

∂xα
Γ α
µν ,

which quantity, by reason of Equation 12.7, is equal to

∂

∂xα

(
gνσΓ α

µν

)
− gνβΓ σ

αβΓ
α
µν − gσβΓ ν

βαΓ
α
µν ,

or (with different symbols for the summation indices)

∂

∂xα

(
gσβΓ α

µβ

)
− gγδΓ σ

γβΓ
β
δµ − gνσΓ α

µβΓ
β
να .

The third term of this expression cancels with the one arising from the second term
of the field Equation 15.1; using Equation 16.5, the second term may be written

κ ·
(
t σ
µ − 1

2
· δ σ

µ t

)
,

where t = t α
α . Thus instead of Equation 15.1 we obtain

∂

∂xα

(
gσβΓ α

µβ

)
= −κ ·

(
t σ
µ − 1

2
· δ σ

µ t

)
√
−g = 1 .

 (16.7)
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17. The General Form of the Field
Equations of Gravitation

The field equations for matter-free space formulated in chapter 16 are to be
compared with the field equation

∇2ϕ = 0

of Newton’s theory. We require the equation corresponding to Poisson’s equation

∇2ϕ = 4πκρ ,

where ρ denotes the density of matter.
The special theory of relativity has led to the conclusion that inert mass is nothing
more or less than energy, which finds its complete mathematical expression in a
symmetrical tensor of second rank, the energy-tensor. Thus in the general theory of
relativity we must introduce a corresponding energy-tensor of matter Tα

σ , which, like
the energy-components tσ (Equation 16.4 and Equation 16.5) of the gravitational
field, will have mixed character, but will pertain to a symmetrical covariant tensor.1

The system of Equation 16.7 shows how this energy-tensor (corresponding to the
density ρ in Poisson’s equation) is to be introduced into the field equations of
gravitation. For if we consider a complete system (e.g. the solar system), the total
mass of the system, and therefore its total gravitating action as well, will depend
on the total energy of the system, and therefore on the ponderable energy together
with the gravitational energy. This will allow itself to be expressed by introducing
into Equation 16.7, in place of the energy-components of the gravitational field
alone, the sums tσµ + T σ

µ of the energy-components of matter and of gravitational
field. Thus instead of Equation 16.7 we obtain the tensor equation

∂

∂xα

(
gσβΓ α

µβ

)
= −κ ·

[(
t σ
µ + T σ

µ

)
− 1

2
δ σ
µ (t+ T )

]
√
−g = 1 ,

 (17.1)

where we have set T = T µ
µ (Laue’s scalar). These are the required general field

equations of gravitation in mixed form. Working back from these, we have in place

1gατT
α

σ = Tστ und gσβT α
σ = Tαβ are to be symmetrical tensors.
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of Equation 15.1

∂Γ α
µν

∂xα
+ Γ α

µβΓ
β
να = −κ ·

(
Tµν −

1

2
· gµνT

)
√
−g = 1 .

 (17.2)

It must be admitted that this introduction of the energy-tensor of matter is
not justified by the relativity postulate alone. For this reason we have here
deduced it from the requirement that the energy of the gravitational field shall act
gravitationally in the same way as any other kind of energy. But the strongest
reason for the choice of these equations lies in their consequence, that the equations
of conservation of momentum and energy, corresponding exactly to Equation 16.4
and Equation 16.6, hold good for the components of the total energy. This will be
shown in chapter 18.
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18. The Laws of Conservation in the
General Case

Equation 17.1 may readily be transformed so that the second term on the right-hand
side vanishes. Contract Equation 17.1 with respect to the indices µ and σ, and
after multiplying the resulting equation by 1

2
· δ σ

µ , subtract it from Equation 17.1.
This gives

∂

∂xα

(
gσβΓ α

µβ −
1

2
· δ σ

µ g
λβΓ α

λβ

)
= −κ ·

(
t σ
µ + T σ

µ

)
. (18.1)

On this equation we perform the operation ∂
∂xσ

. We have

∂2

∂xα ∂xσ

(
gσβΓ α

µβ

)
= −1

2
· ∂2

∂xα ∂xσ

[
gσβgαλ ·

(
∂gµλ
∂xβ

+
∂gβλ
∂xµ

− ∂gµβ
∂xλ

)]
.

The first and third terms of the round brackets yield contributions which cancel
one another, as may be seen by interchanging, in the contribution of the third term,
the summation indices α and σ on the one hand, and β and λ on the other. The
second term may be re-modelled by Equation 12.4, so that we have

∂2

∂xα ∂xσ

(
gσβΓ α

µβ

)
=

1

2
· ∂3gαβ

∂xα ∂xβ ∂xµ
. (18.2)

The second term on the left-hand side of Equation 18.1 yields in the first place

−1

2
· ∂2

∂xα ∂xµ

(
gλβΓ α

λβ

)
or

1

4
· ∂2

∂xα ∂xµ

[
gλβgαδ ·

(
∂gδλ
∂xβ

+
∂gδβ
∂xλ

− ∂gλβ
∂xδ

)]
.

With the choice of co-ordinates which we have made, the term deriving from the
last term in round brackets disappears by reason of Equation 12.2. The other two
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may be combined, and together, by Equation 12.4, they give

−1

2
· ∂3gαβ

∂xα ∂xβ ∂xµ
,

so that in consideration of Equation 18.2, we have the identity

∂2

∂xα ∂xσ

(
gσβΓ α

µβ −
1

2
δ σ
µ g

λβΓ α
λβ

)
≡ 0 (18.3)

From Equation 18.3 and Equation 18.1, it follows that

∂
(
t σ
µ + T σ

µ

)
∂xσ

= 0 . (18.4)

Thus it results from our field equations of gravitation that the laws of conservation
of momentum and energy are satisfied. This may be seen most easily from the
consideration which leads to Equation 16.6; except that here, instead of the energy
components t µ

σ of the gravitational field, we have to introduce the totality of the
energy components of matter and gravitational field.
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19. The Laws of Momentum and
Energy for Matter, as a
Consequence of the Field
Equations

Multiplying Equation 17.2 by ∂gµν

∂xσ
, we obtain, by the method adopted in chapter 16,

in view of the vanishing of

gµν ·
∂gµν

∂xσ
,

the equation
∂t α

σ

∂xα
+

1

2
· ∂g

µν

∂xσ
Tµν = 0 ,

or, in view of Equation 18.4

∂T α
σ

∂xα
+

1

2
· ∂g

µν

∂xσ
Tµν = 0 . (19.1)

Comparison with Equation 12.16b shows that with the choice of system of co-
ordinates which we have made, this equation predicates nothing more or less
than the vanishing of divergence of the material energy-tensor. Physically, the
occurrence of the second term on the left-hand side shows that laws of conservation
of momentum and energy do not apply in the strict sense for matter alone, or else
that they apply only when the gµν are constant, i.e. when the field intensities
of gravitation vanish. This second term is an expression for momentum, and for
energy, as transferred per unit of volume and time from the gravitational field to
matter. This is brought out still more clearly by re-writing Equation 19.1 in the
sense of Equation 12.15 as

∂T α
σ

∂xα
= −Γ α

σβΓ
β
α . (19.2)

The right side expresses the energetic effect of the gravitational field on matter.
Thus the field equations of gravitation contain four conditions which govern the
course of material phenomena. They give the equations of material phenomena
completely, if the latter is capable of being characterized by four differential
equations independent of one another.1

1On this question cf. H. Hilbert, Nachr. d. K. Gesellsch. d. Wiss. zu Göttingen, Math.-phys.
Klasse, 1915, p, 3.



Part IV.

MATERIAL PHENOMENA



20. Introduction

The mathematical aids developed in Part II enable us forthwith to generalize the
physical laws of matter (hydrodynamics, Maxwell’s electrodynamics), as they
are formulated in the special theory of relativity, so that they will fit in with the
general theory of relativity. When this is done, the general principle of relativity
does not indeed afford us a further limitation of possibilities; but it makes us
acquainted with the influence of the gravitational field on all processes, without
our having to introduce any new hypothesis whatever.
Hence it comes about that it is not necessary to introduce definite assumptions as to
the physical nature of matter (in the narrower sense). In particular it may remain
an open question whether the theory of the electromagnetic field in conjunction
with that of the gravitational field furnishes a sufficient basis for the theory of
matter or not. The general postulate of relativity is unable on principle to tell
us anything about this. It must remain to be seen, during the working out of
the theory, whether electromagnetism and the doctrine of gravitation are able in
collaboration to perform what the former by itself is unable to do.



21. Euler’s Equations for a
Frictionless Adiabatic Fluid

Let p and ρ be two scalars, the former of which we call the ”pressure”, the latter the
”density” of a fluid; and let an equation subsist between them. Let the contravariant
symmetrical tensor

Tαβ = −gαβ · p+ ρ · dxα
ds

dxβ
ds

(21.1)

be the contravariant energy-tensor of the fluid. To it belongs the covariant tensor

Tµν = −gµν · p+ gµα
dxα
ds

· gµβ
dxβ
ds

· ρ , (21.2)

as well as the mixed tensor1

T α
σ = −δ α

σ · p+ gσβ
dxβ
ds

dxα
ds

· ρ . (21.3)

Inserting the right-hand side of Equation 21.3 in Equation 19.2, we obtain the
Eulerian hydrodynamic equations of the general theory of relativity. They give,
in theory, a complete solution of the problem of motion, since the four equations
Equation 19.2, together with the given equation between p and ρ, and the equation

gαβ
dxα
ds

dxβ
ds

= 1

are sufficient, gαβ being given, to define the six unknowns

p , ρ ,
dx1
ds

,
dx2
ds

,
dx3
ds

,
dx4
ds

.

If the gµν are also unknown, the Equation 17.2 are brought in. These are eleven
equations for defining the ten functions gµν , so that these functions appear over-
defined. We must remember, however, that the Equation 19.2 are already contained
in the equations Equation 17.2, so that the latter represent only seven independent
equations. There is good reason for this lack of definition, in that the wide freedom

1For an observer using a system of reference in the sense of the special theory of relativity for an
infinitely small region, and moving with it, the density of energy T 4

4 equals ρ− p. This gives
the definition of ρ. Thus ρ is not constant for an incompressible fluid.
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of the choice of co-ordinates causes the problem to remain mathematically undefined
to such a degree that three of the functions of space may be chosen at will.2

2On the abandonment of the choice of co-ordinates with g = −1, there remain four functions of
space with liberty of choice, corresponding to the four arbitrary functions at our disposal in the
choice of co-ordinates.
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22. Maxwell’s Electromagnetic Field
Equations for Free Space

Let ϕν be the components of a covariant vector – the electromagnetic potential
vector. From them we form, in accordance with Equation 12.10, the components
Fρσ of the covariant six-vector of the electromagnetic field, in accordance with the
system of equations

Fρσ =
∂ϕρ

∂xσ
− ∂ϕσ

∂xρ
. (22.1)

It follows from Equation 22.1 that the system of equations

∂Fρσ

∂xτ
+
∂Fστ

∂xρ
+
∂Fτρ

∂xσ
= 0 (22.2)

is satisfied, its left side being, by Equation 12.11, an antisymmetrical tensor of
the third rank. Equation 22.2 thus contains essentially four equations which are
written out as follows:–

∂F23

∂x4
+
∂F34

∂x2
+
∂F42

∂x3
= 0

∂F34

∂x1
+
∂F41

∂x3
+
∂F13

∂x4
= 0

∂F41

∂x2
+
∂F12

∂x4
+
∂F24

∂x1
= 0

∂F12

∂x3
+
∂F23

∂x1
+
∂F31

∂x2
= 0 .


(22.3)

This system corresponds to the second of Maxwell’s systems of equations. We
recognize this at once by setting

F23 = Hx

F31 = Hy

F12 = Hz

F14 = Ex

F24 = Ey

F34 = Ez .


(22.4)
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Then in place of Equation 22.3 we may set, in the usual notation of three-dimensional
vector analysis,

∂H

∂t
+ curlE = 0

divH = 0 .

 (22.5)

We obtain Maxwell’s first system by generalizing the form given by Minkowski.
We introduce the contravariant six- vector associated with Fαβ

F µν = gµαqνβFαβ (22.6)

and also the contravariant vector Jµ of the density of the electric current. Then,
taking Equation 12.14 into consideration, the following equations will be invari-
ant for any substitution whose invariant is unity (in agreement with the chosen
coordinates):–

∂F µν

∂xν
= Jµ . (22.7)

Let

F 23 = H ′
x

F 31 = H ′
y

F 12 = H ′
z

F 14 = −E ′
x

F 24 = −E ′
y

F 34 = −E ′
z .


(22.8)

which quantities are equal to the quantities Hx, . . .Ez in the special case of the
restricted theory of relativity; and in addition

J1 = jx

J2 = jy

J3 = jz

J4 = ρ ,

we obtain in place of Equation 22.7

curlH ′ − ∂E ′

∂t
= j

divE ′ = ρ .

 (22.9)

The Equation 22.2, Equation 22.6, and Equation 22.7 thus form the generalization
of Maxwell’s field equations for free space, with the convention which we have
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established with respect to the choice of co-ordinates.
The Energy-components of the Electromagnetic Field.– We form the inner product

κσ = FσµJ
µ (22.10)

By Equation 22.4, its components, written in the three-dimensional manner, are

κ1 = ρ · Ex + [j,H]x
· · · · · ·
· · · · · ·

κ4 = −(j, E) .

 (22.11)

κσ is a covariant vector, the components of which are equal to the negative
momentum, or, respectively, the energy, which is transferred from the electric
masses to the electromagnetic field per unit of time and volume. If the electric
masses are free, that is, under the sole influence of the electromagnetic field, the
covariant vector κσ will vanish.
To obtain the energy-components T ν

σ of the electromagnetic field, we need only
give to equation κσ = 0 the form of Equation 19.1. From Equation 22.7 and
Equation 22.10 we have in the first place

κσ = Fσµ
∂F µν

∂xν
=

∂

∂xν
(FσµF

µν)− F µν ∂Fσµ

∂xν
.

The second term of the right-hand side, by reason of Equation 22.2, permits the
transformation

F µν ∂Fσµ

∂xν
= −1

2
· F µν ∂Fµν

∂xσ
= −1

2
· gµαgνβ · Fαβ

∂Fµν

∂xσ
,

which latter expression may, for reasons of symmetry, also be written in the form

−1

4
·
[
gµαgνβ · Fαβ

∂Fµν

∂xσ
+ gµαgνβ · ∂Fαβ

∂xσ
Fµν

]
.

But for this we may set

−1

4
· ∂

∂xσ

(
gµαgνβFαβFµν

)
+

1

4
· FαβFµν

∂

∂xσ

(
gµαgνβ

)
.

The first of these terms is written more briefly

−1

4
· ∂

∂xσ
(F µνFµν) ;
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the second, after the differentiation is carried out, and after some reduction, results
in

−1

2
· F µτFµνg

νρ∂gστ
∂xσ

.

Taking all three terms together we obtain the relation

κσ =
∂T ν

σ

∂xν
− 1

2
· gτµ · ∂gµν

∂xσ
T ν
τ , (22.12)

where

T ν
σ = −FσαF

να +
1

4
· δ ν

σ FαβF
αβ . (22.13)

Equation 22.12, if κσ vanishes, is, on account of Equation 12.3, equivalent to
Equation 19.1 or Equation 19.2 respectively. Therefore the T ν

σ are the energy-
components of the electromagnetic field. With the help of Equation 22.4 and
Equation 22.8, it is easy to show that these energy-components of the electro-
magnetic field in the case of the special theory of relativity give the well-known
Maxwell-Poynting expressions.
We have now deduced the general laws which are satisfied by the gravitational field
and matter, by consistently using a system of co-ordinates for which

√
−g = 1. We

have thereby achieved a considerable simplification of formulæ and calculations,
without failing to comply with the requirement of general covariance; for we have
drawn our equations from generally covariant equations by specializing the system
of co-ordinates.
Still the question is not without a formal interest, whether with a correspondingly
generalized definition of the energy-components of the gravitational field and mat-
ter, even without specializing the system of co-ordinates, it is possible to formulate
laws of conservation in the form of Equation 18.4, and field equations of gravitation
of the same nature as Equation 17.1 or Equation 18.1, in such a manner that on
the left we have a divergence (in the ordinary sense), and on the right the sum of
the energy-components of matter and gravitation. I have found that in both cases
this is actually so. But I do not think that the communication of my somewhat
extensive reflexions on this subject would be worthwhile, because after all they do
not give us anything that is materially new.
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Part V.

DISCUSSIONS ON NEWTONS
THEORY



23. Newton’s Theory as a First
Approximation

As has already been mentioned more than once, the special theory of relativity as
a special case of the general theory is characterized by the gµν having the constant
values according to Equation 4.4. From what has already been said, this means
complete neglect of the effects of gravitation. We arrive at a closer approximation to
reality by considering the case where the gµν differ from the values of Equation 4.4
by quantities which are small compared with 1, and neglecting small quantities of
second and higher order. (First point of view of approximation.)
It is further to be assumed that in the space-time territory under consideration
the gµν at spatial infinity, with a suitable choice of co-ordinates, tend toward the
values according to Equation 4.4; i.e. we are considering gravitational fields which
may be regarded as generated exclusively by matter in the finite region.
It might be thought that these approximations must lead us to Newton’s theory.
But to that end we still need to approximate the fundamental equations from a
second point of view. We give our attention to the motion of a material point in
accordance with the Equation 9.1. In the case of the special theory of relativity
the components

dx1
ds

,
dx2
ds

,
dx3
ds

may take on any values. This signifies that any velocity

v =

√(
dx1
dx4

)2

+

(
dx2
dx4

)2

+

(
dx3
dx4

)2

may occur, which is less than the velocity of light in vacuo. If we restrict ourselves
to the case which almost exclusively offers itself to our experience, of v being small
as compared with the velocity of light, this denotes that the components

dx1
ds

,
dx2
ds

,
dx3
ds

are to be treated as small quantities, while dx4

ds
, to the second order of small

quantities, is equal to one. (Second point of view of approximation.)
Now we remark that from the first point of view of approximation the magnitudes
Γ τ
µν are all small magnitudes of at least the first order. A glance at Equation 14.2
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thus shows that in this equation, from the second point of view of approximation,
we have to consider only terms for which µ = ν = 4. Restricting ourselves to terms
of lowest order we first obtain in place of Equation 14.2 the equations

d2xτ
dt2

= F τ
44 ,

where we have set ds = dx4 = dt; or with restriction to terms which from the first
point of view of approximation are of first order:–

d2xτ
dt2

=

[
44
τ

]
(τ = 1, 2, 3)

d2x4
dt2

= −
[
44
4

]
.

If in addition we suppose the gravitational field to be a quasi-static field, by
confining ourselves to the case where the motion of the matter generating the
gravitational field is but slow (in comparison with the velocity of the propagation
of light), we may neglect on the right-hand side differentiations with respect to the
time in comparison with those with respect to the space co-ordinates, so that we
have

d2xτ
dt2

= −1

2
· ∂g44
∂xτ

(τ = 1, 2, 3) . (23.1)

This is the equation of motion of the material point according to Newton’s theory,
in which 1

2
g44 plays the part of the gravitational potential. What is remarkable in

this result is that the component g44 of the fundamental tensor alone defines, to a
first approximation, the motion of the material point.
We now turn to the field Equation 17.2. Here we have to take into consideration
that the energy-tensor of ”matter” is almost exclusively defined by the density of
matter ρ in the narrower sense, i.e. by the second term of the right-hand side of
Equation 21.1 (or, respectively, Equation 21.2 or Equation 21.3). If we form the
approximation in question, all the components vanish with the one exception of

T44 = ρ = T .

On the left-hand side of Equation 17.2 the second term is a small quantity of second
order; the first yields, to the approximation in question,

+
∂

∂x1

[
µ ν
1

]
+

∂

∂x2

[
µ ν
2

]
+

∂

∂x3

[
µ ν
3

]
+

∂

∂x4

[
µ ν
4

]
.
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For µ = ν = 4, this gives, with the omission of terms differentiated with respect to
time,

−1

2
·
(
∂2g44
∂x21

+
∂2g44
∂x22

+
∂2g44
∂x23

)
= −1

2
· ∇2 g44 .

The last of Equation 17.2 thus yields

∇2 g44 = κ · ρ . (23.2)

The Equation 23.1 and Equation 23.2 together are equivalent to Newton’s law of
gravitation.
By Equation 23.1 and Equation 23.2 the expression for the gravitational potential
becomes

− κ

8π
·
∫
ρ dτ

r
, (23.3)

while Newton’s theory, with the unit of time which we have chosen, gives

−K
c2

·
∫
ρ dτ

r

in whichK denotes the constant 6.7×10−8, usually called the constant of gravitation.
By comparison we obtain

κ =
8πK

c2
= 1.87× 10−27 . (23.4)

65



24. Behaviour of Rods and Clocks in
the Static Gravitational Field.
Bending of Light-rays. Motion
of the Perihelion of a Planetary
Orbit

To arrive at Newton’s theory as a first approximation we had to calculate only
one component, g44, of the ten gµν of the gravitational field, since this component
alone enters into the first approximation, Equation 23.1, of the equation for the
motion of the material point in the gravitational field. From this, however, it is
already apparent that other components of the gµν must differ from the values
given in Equation 4.4 by small quantities of the first order. This is required by the
condition g = −1.
For a field-producing point mass at the origin of co-ordinates, we obtain, to the
first approximation, the radially symmetrical solution

gρσ = −δρσ − α · xρxσ
r3

(ρ and σ between 1 and 3)

gρ4 = g4ρ = 0 (ρ between 1 and 3)

g44 = 1− α

r
.

 (24.1)

where δρσ is 1 or 0, respectively, accordingly as ρ = σ or ρ±σ, and r is the quantity

+
√
x21 + x22 + x23 .

On account of Equation 23.3

α =
κM

4π
, (24.2)

if M denotes the field-producing mass. It is easy to verify that the field equations
(outside the mass) are satisfied to the first order of small quantities.
We now examine the influence exerted by the field of the massM upon the metrical
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properties of space. The relation

ds2 = gµν · dxµ dxν

always holds between the ”locally” (chapter 4) measured lengths and times ds on
the one hand, and the differences of co-ordinates dxν on the other hand.
For a unit-measure of length laid ”parallel” to the axis of x, for example, we should
have to set

ds2 = −1

dx2 = dx3 = dx4 = 0 ,

Therefore
g11 dx

2
1 = −1 .

If, in addition, the unit-measure lies on the axis of x, the first of Equation 24.1
gives

g11 = −
(
1 +

α

r

)
.

From these two relations it follows that, correct to a first order of small quantities,

dx = 1− α

2 · r
.

The unit measuring-rod thus appears a little shortened in relation to the system
of co-ordinates by the presence of the gravitational field, if the rod is laid along a
radius.
In an analogous manner we obtain the length of coordinates in tangential direction
if, for example, we set

ds2 = −1

dx1 = dx3 = dx4 = 0

x1 = r

x2 = x3 = 0 .

The result is
−1 = g22 dx

2
2 = − dx22 . (24.3)

With the tangential position, therefore, the gravitational field of the point of mass
has no influence on the length of a rod.
Thus Euclidean geometry does not hold even to a first approximation in the
gravitational field, if we wish to take one and the same rod, independently of its
place and orientation, as a realization of the same interval; although, to be sure, a
glance at Equation 24.2 and Equation 23.4 shows that the deviations to be expected
are much too slight to be noticeable in measurements of the earth’s surface.
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Further, let us examine the rate of a unit clock, which is arranged to be at rest in
a static gravitational field. Here we have for a clock period

ds = 1

dx1 = dx2 = dx3 = 0 .

Therefore

1 = g44 · dx24

dx4 =
1

√
g44

=
1√

1 + (g44 − 1)
= 1− g44 − 1

2

or

dx4 = 1 +
κ

8π
·
∫
ρ dτ

r
. (24.4)

Thus the clock goes more slowly if set up in the neighbourhood of ponderable
masses. From this it follows that the spectral lines of light reaching us from the
surface of large stars must appear displaced towards the red end of the spectrum.1

We now examine the course of light-rays in the static gravitational field. By the
special theory of relativity the velocity of light is given by the equation

− dx21 − dx22 − dx23 + dx24 = 0

and therefore by the general theory of relativity by the equation

ds2 = gµν · dxµ dxν = 0 . (24.5)

If the direction, i.e. the ratio dx1 : dx2 : dx3, is given, Equation 24.5 gives the
quantities

dx1
dx4

,
dx2
dx4

,
dx3
dx4

and accordingly the velocity√(
dx1
dx4

)2

+

(
dx2
dx4

)2

+

(
dx3
dx4

)2

= γ ,

defined in the sense of Euclidean geometry. We easily recognize that the course
of the light-rays must be bent with regard to the system of co-ordinates, if the gµν
are not constant. If n is a direction perpendicular to the propagation of light, the
Huygens principle shows that the light-ray, envisaged in the plane (γ, n), has the

1According to E. Freundlich, spectroscopical observations on fixed stars of certain types indicate
the existence of an effect of this kind, but a crucial test of this consequence has not yet been
made.
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curvature − ∂γ
∂n
.

We examine the curvature undergone by a ray of light passing by a mass M at
the distance ∆. If we choose the system of co-ordinates in agreement with the
accompanying Figure 24.1, the total bending of the ray (calculated positively if
concave towards the origin) is given in sufficient approximation by

B =

∫ +∞

−∞

∂γ

∂x1
dx2 ,

while Equation 24.5 and Equation 24.1 give

γ =

√
−g44
g22

= 1 +
α

2 · r
·
(
1 +

x22
r2

)
.

Carrying out the calculation, this gives

B =
2α

∆
=

κM

2π∆
.

Figure 24.1.: Bending of a light ray by a mass M at distance ∆

According to this, a ray of light going past the sun undergoes a deflexion of 1.7′′;
and a ray going past the planet Jupiter a deflexion of about 0.2′′.
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If we calculate the gravitational field to a higher degree of approximation, and
likewise with corresponding accuracy the orbital motion of a material point of
relatively infinitely small mass, we find a deviation of the following kind from
the Kepler-Newton laws of planetary motion. The orbital ellipse of a planet
undergoes a slow rotation, in the direction of motion, of amount

ϵ = 24π3 · a2

T 2c2 · (1− e2)
(24.6)

per revolution. In this formula a denotes the major semi-axis, c the velocity of light
in the usual measurement, e the eccentricity, T the time of revolution in seconds.2

Calculation gives for the planet Mercury a rotation of the orbit of 43′′ per cen-
tury, corresponding exactly to astronomical observation (Leverrier); for the
astronomers have discovered in the motion of the perihelion of this planet, after
allowing for disturbances by other planets, an inexplicable remainder of this mag-
nitude.

2For the calculation I refer to the original papers: A. Einstein, Sitzungsber. d. Preuss. Akad. d.
Wiss., 1915, p. 831; K. Schwarzschild, ibid., 1916, p. 189.
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Appendix



25. Some Notes on Tensors

There exist two forms of representation for the components of a four-vector:1

Ai = contravariant

Ai = covariant

The three spacial components of a four-vector Ai form a three-dimensional vector
A regarding spatial rotation, i.e. a transformation that doesn’t affect the time
co-ordinate. The time component of a four-vector represents a three-dimensional
scalar regarding these transformations. Therefore one can write for a four-vector

Ai = (A0,A) .

Analogously for a tensor there exist three forms of representation for its compo-
nents:

Aik = contravariant

Aik = covariant

Ai
k = mixed

A k
i = mixed

In the case of a mixed tensor there is in general to differentiate between the
last two cases, depending on whether the first index is subscript and the second
superscript or vice versa.

1See J. M. Lifschitz, L. D. Landau, Band II, Klassische Feldtheorie, 1997, p. 18.



25. Some Notes on Tensors

The relation between the different types of the components is given through the
following common rule:

The sign of a component is changed through the raising or lowering
of a spacial indices (1, 2, 3), but not by the raising or lowering of a
time component (0).

This, e.g., gives:

A00 = A00; A01 = −A01

A0
0 = A00; A1

0 = A01

A0
1 = −A01; A1

1 = −A11

A11 = A11; · · · .
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